Pitting-induced hydrogen embrittlement of magnesium- aluminium alloy

نویسندگان

  • M. Bobby Kannan
  • W. Dietzel
چکیده

In this study, the pitting corrosion susceptibility and its role on the hydrogen embrittlement behavior of AZ80 magnesium alloy were studied using slow strain rate testing (SSRT), electrochemical technique and immersion test method. The electrochemical and immersion tests in chloride-containing solution revealed severe pitting corrosion in the alloy. The SSRT results of the alloy under continuouslyexposed conditions in chloride-containing solution and in distilled water showed that the mechanical properties of the alloy deteriorated considerably in both the solutions. Pre-exposure of the alloy in distilled water did not show any considerable change in the mechanical properties of the alloy, however in chloride-containing solution a significant loss in the mechanical properties was noticed. Cleavage facets were observed in the vicinity of the localized attacked region of the alloy pre-exposed in chloride-containing solution. Interestingly, desiccating the pre-exposed (in chloridecontaining solution) samples reduced the loss in the mechanical properties, which * Corresponding author. Tel.: +61 7 4781 5080; fax: +61 7 4781 6788; e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment.

Various electrochemical approaches, including potentiodynamic polarization, open circuit potential evolution and electrochemical impedance spectroscopy (EIS), are employed to investigate the degradation behavior of biomedical magnesium alloy under the influence of aggressive ions, such as chloride, phosphate, carbonate and sulfate, in a physiological environment. The synergetic effects and mutu...

متن کامل

Effect of Hydrogen on Corrosion and Stress Corrosion Cracking of AZ91 Alloy in Aqueous Solutions

The effect of hydrogen on the corrosion and stress corrosion cracking of the magnesium AZ91 alloy has been investigated in aqueous solutions. Hydrogen produced by corrosion in water diffuses into, and reacts with the Mg matrix to form hydride. Some of the hydrogen accumulates at hydride/Mg matrix (or secondary phase) interfaces as a consequence of slow hydride formation and the incompatibility ...

متن کامل

Roughness, Residual Stresses and Pitting Corrosion Effect on Shot

Original scientific paper The paper deals with the effect of roughness, residual stresses and pitting corrosion on different shot peened (SP) ENAW 7075 aluminium alloy in different states. Suitable residual stress profile increases the applicability and life cycle of mechanical parts, treated by shot peening. Pitting corrosion has a major influence on aging of structural elements made of high s...

متن کامل

Effect of Deformation-Induced Defects on the Microstructure and Pitting Corrosion Behavior of Al-Ag Alloy

In this study, a wide range of combined ageing treatments and cold work deformations in the Al 4.2 wt% Ag alloy matrix were proposed, aiming to investigate the effect of defects such as precipitates (Ag2Al plates) and dislocations on the mechanical and electrochemical behavior of Al–4.2 wt% Ag alloys. Further reductions of thickness from 10 to 60%, decreases the mean size of Ag2...

متن کامل

Influence of Sulfate-Reducing Bacteria on the Corrosion Residual Strength of an AZ91D Magnesium Alloy

In this paper, the corrosion residual strength of the AZ91D magnesium alloy in the presence of sulfate-reducing bacteria is studied. In the experiments, the chemical composition of corrosion film was analyzed by a scanning electron microscope with energy dispersive X-ray spectroscopy. In addition, a series of instruments, such as scanning electronic microscope, pH-meter and an AG-10TA materials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014